Deep Learning Triplet Ordinal Relation Preserving Binary Code for Remote Sensing Image Retrieval Task

Author:

Wang ZhenORCID,Wu Nannan,Yang Xiaohan,Yan Bingqi,Liu PingpingORCID

Abstract

As satellite observation technology rapidly develops, the number of remote sensing (RS) images dramatically increases, and this leads RS image retrieval tasks to be more challenging in terms of speed and accuracy. Recently, an increasing number of researchers have turned their attention to this issue, as well as hashing algorithms, which map real-valued data onto a low-dimensional Hamming space and have been widely utilized to respond quickly to large-scale RS image search tasks. However, most existing hashing algorithms only emphasize preserving point-wise or pair-wise similarity, which may lead to an inferior approximate nearest neighbor (ANN) search result. To fix this problem, we propose a novel triplet ordinal cross entropy hashing (TOCEH). In TOCEH, to enhance the ability of preserving the ranking orders in different spaces, we establish a tensor graph representing the Euclidean triplet ordinal relationship among RS images and minimize the cross entropy between the probability distribution of the established Euclidean similarity graph and that of the Hamming triplet ordinal relation with the given binary code. During the training process, to avoid the non-deterministic polynomial (NP) hard problem, we utilize a continuous function instead of the discrete encoding process. Furthermore, we design a quantization objective function based on the principle of preserving triplet ordinal relation to minimize the loss caused by the continuous relaxation procedure. The comparative RS image retrieval experiments are conducted on three publicly available datasets, including UC Merced Land Use Dataset (UCMD), SAT-4 and SAT-6. The experimental results show that the proposed TOCEH algorithm outperforms many existing hashing algorithms in RS image retrieval tasks.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3