Deep Adversarial Learning Triplet Similarity Preserving Cross-Modal Retrieval Algorithm

Author:

Li Guokun,Wang ZhenORCID,Xu Shibo,Feng Chuang,Yang Xiaohan,Wu Nannan,Sun Fuzhen

Abstract

The cross-modal retrieval task can return different modal nearest neighbors, such as image or text. However, inconsistent distribution and diverse representation make it hard to directly measure the similarity relationship between different modal samples, which causes a heterogeneity gap. To bridge the above-mentioned gap, we propose the deep adversarial learning triplet similarity preserving cross-modal retrieval algorithm to map different modal samples into the common space, allowing their feature representation to preserve both the original inter- and intra-modal semantic similarity relationship. During the training process, we employ GANs, which has advantages in modeling data distribution and learning discriminative representation, in order to learn different modal features. As a result, it can align different modal feature distributions. Generally, many cross-modal retrieval algorithms only preserve the inter-modal similarity relationship, which makes the nearest neighbor retrieval results vulnerable to noise. In contrast, we establish the triplet similarity preserving function to simultaneously preserve the inter- and intra-modal similarity relationship in the common space and in each modal space, respectively. Thus, the proposed algorithm has a strong robustness to noise. In each modal space, to ensure that the generated features have the same semantic information as the sample labels, we establish a linear classifier and require that the generated features’ classification results be consistent with the sample labels. We conducted cross-modal retrieval comparative experiments on two widely used benchmark datasets—Pascal Sentence and Wikipedia. For the image to text task, our proposed method improved the mAP values by 1% and 0.7% on the Pascal sentence and Wikipedia datasets, respectively. Correspondingly, the proposed method separately improved the mAP values of the text to image performance by 0.6% and 0.8% on the Pascal sentence and Wikipedia datasets, respectively. The experimental results show that the proposed algorithm is better than the other state-of-the-art methods.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3