Deep Hash Remote Sensing Image Retrieval with Hard Probability Sampling

Author:

Shan Xue,Liu PingpingORCID,Gou Guixia,Zhou Qiuzhan,Wang Zhen

Abstract

As satellite observation technology improves, the number of remote sensing images significantly and rapidly increases. Therefore, a growing number of studies are focusing on remote sensing image retrieval. However, having a large number of remote sensing images considerably slows the retrieval time and takes up a great deal of memory space. The hash method is being increasingly used for rapid image retrieval because of its remarkably fast performance. At the same time, selecting samples that contain more information and greater stability to train the network has gradually become the key to improving retrieval performance. Given the above considerations, we propose a deep hash remote sensing image retrieval method, called the hard probability sampling hash retrieval method (HPSH), which combines hash code learning with hard probability sampling in a deep network. Specifically, we used a probability sampling method to select training samples, and we designed one novel hash loss function to better train the network parameters and reduce the hashing accuracy loss due to quantization. Our experimental results demonstrate that HPSH could yield an excellent representation compared with other state-of-the-art hash approaches. For the university of California, merced (UCMD) dataset, HPSH+S resulted in a mean average precision (mAP) of up to 90.9% on 16 hash bits, 92.2% on 24 hash bits, and 92.8% on 32 hash bits. For the aerial image dataset (AID), HPSH+S achieved a mAP of up to 89.8% on 16 hash bits, 93.6% on 24 hash bits, and 95.5% on 32 hash bits. For the UCMD dataset, with the use of data augmentation, our proposed approach achieved a mAP of up to 99.6% on 32 hash bits and 99.7% on 64 hash bits.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3