Abstract
3D GIS has attracted increasing attention from academics, industries, and governments with the increase in the requirements for the interoperability and integration of different sources of spatial data. Three-dimensional road extraction based on multisource remote sensing data is still a challenging task due to road occlusion and topological complexity. This paper presents a novel framework for 3D road extraction by integrating LiDAR point clouds and high-resolution remote sensing imagery. First, a multiscale collaborative representation-based road probability estimation method was proposed to segment road surfaces from high-resolution remote sensing imagery. Then, an automatic stratification process was conducted to specify the layer values of each road segment. Additionally, a multifactor filtering strategy was proposed in consideration of the complexity of ground features and the existence of noise in LiDAR points. Lastly, a least-square-based elevation interpolation method is used for restoring the elevation information of road sections blocked by overpasses. The experimental results based on two datasets in Hong Kong Island show that the proposed method obtains competitively satisfactory results.
Funder
Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi Province
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献