Development of Motorway Horizontal Alignment Databases for Accurate Accident Prediction Models

Author:

De Santos-Berbel César1ORCID,Ferreira Sara2ORCID,Couto António2ORCID,Lobo António2ORCID

Affiliation:

1. Departamento de Estructuras y Física de Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. CITTA—Centro de Investigação do Território Transportes e Ambiente, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal

Abstract

The safe and efficient operation of highways minimizes the environmental impact, reduces accidents, and promotes the reliability of the transportation infrastructure, all in support of sustainable transportation. The horizontal alignment of highways holds particular importance as it directly impacts driver behavior, vehicle stability, and overall road safety. In many cases, highway inventory data held by infrastructure operators may contain inaccurate or outdated information. The accuracy of the variables used in crash prediction models eliminates possible bias in the variable estimators. This research proposes a methodology to obtain accurate horizontal geometric features from digital imagery based on the analysis of the planimetry, feature geolocation and centerline azimuth sequence. The reliability of the method is verified by means of numerical and statistical procedures. This methodology is applied to 150 km of motorway segments in Portugal. Although it is found that the geometric characteristics of most of the inventory segments closely matched the extracted alignments, very significant differences are found in some sections. The results of the proposed procedure are illustrated with several examples. Finally, the propagation of error in the determination of the geometric design independent variables in the fitting of the statistical models is discussed based on the results.

Funder

UNIVERSIDAD POLITÉCNICA DE MADRID

Fundação para a Ciência e a Tecnologia, I.P.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3