Constitutive Model and Fracture Failure of Sandstone Damage under High Temperature–Cyclic Stress

Author:

Luo Ji’an,He Jun

Abstract

Deformation and damage characteristics of high-temperature rocks during underground coal gasification are the fundamental mechanical problems encountered in coal-bed gasification production. In order to study the characteristics of deformation and damage processes of rocks under the joint action of high temperature and high stress, a damage intrinsic model under the joint action of high temperature–cyclic loading is needed. In this paper, we used the damage mechanics theory to establish the damage instantiation model of rocks under the joint action of high temperature loads based on the Mohr–Coulomb strength criterion. It was found that the higher the temperature, the lower the strength of sandstone, the lower the peak stress, and the higher the peak strain, the peak stress decreased from 95.6 MPa at room temperature to 74.8 MPa at 400 °C to 49.5 MPa at 800 °C, and the peak strain increased from room temperature to 400 °C to 800 °C by 27.9% and 33.4%, respectively. With the increase in temperature, the internal microcracks of sandstone increased and expanded, which caused the degree of damage to intensify, and the macroscopic expression was the reduction in strength and stiffness of the sandstone. The rock went through four stages from loading to damage, including damage weakening, plastic deformation, strain softening, and residual deformation. The four types of fractures that led to the overall rupture of the rock were open fracture, secondary coplanar fracture, secondary inclined fracture, and oblique fracture. The damage intrinsic model constructed in this paper could better reflect the damage process of thermally damaged sandstone under the action of periodic loading, and had certain rationality. The damage intrinsic evolution curve, as well as the damage mechanism of sandstone under the action of macroscopic high temperature-loading, were discussed from the perspective of microscopic damage evolution, and the fracture extension pattern and penetration mechanism of the rock under different temperatures were analyzed. The research results provide an important reference for the design and engineering application of gasifiers in coal-bed underground gasification projects.

Funder

Anhui University Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Reference20 articles.

1. Development and Energy Recovery Evaluation of Coal Underground Gasification Void Area;Su;J. China Coal Soc.,2021

2. Mechanical properties experiment of sandstone under high-temperature action;Zhang;J. Min. Saf. Eng.,2007

3. Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures

4. The Effects of Temperature and Pressure on the Porosity Evolution of Flechtinger Sandstone

5. Effect of Temperature on the Strength Parameters at the Plastic Domain for Unconsolidated Sandstones

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3