Hydration Absorption and Thermal Effects of Outcrop Porous Sandstone Based on Intelligent Experimental and Infrared Thermography Techniques

Author:

Hao Nai123,Wang Yongliang24ORCID,Cheng Hao2,Wu Xiaochong2,Zhao Yi2

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

3. Research Institute for Deep Underground Science and Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

4. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Sandstones are enriched in deep energy reservoirs and also exist as outcrop rocks, where the pore characteristics of sandstone are influenced by hydration absorption and thermal effects. To study the influence of the initial temperature on the hydration absorption characteristics of outcrop porous sandstone in the Mogao Grottoes, China, an intelligent experimental device for rock hydration was used. The hydration absorption characteristics and temperature effects of sandstone were analyzed by using infrared thermography techniques to monitor the infrared radiation characteristics of the sandstone’s surface during hydration absorption. The experimental results show that the higher the initial temperature of the rock samples, the shorter the time it takes for the sandstone to absorb enough water to reach saturation. The temperature variation of sandstone with different initial temperatures was also determined; the variation in the hydration absorption of sandstone conforms to certain rules, which can be expressed by formulae containing certain parameters. The changing trend of hydration absorption in outcrop porous sandstone shows that the hydration absorption increases rapidly at first, and then the rate of increase slows down until the hydration absorption remains unchanged after saturation. The experimental technique and method provide feasible means and techniques to evaluate the hydration absorption and thermal effects of outcrop porous sandstone, for further detecting the weathering degree of rock grottoes and revealing the damage mechanisms.

Funder

State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology

Fundamental Research Funds for the Central Universities, Ministry of Education of China

Innovation Training Program for College Students, China University of Mining and Technology

Beijing Natural Science Foundation

China National Petroleum Corporation (CNPC) Innovation Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3