Unconfined compressive strength prediction of rock materials based on machine learning

Author:

Niu Lihong,Cui Qiang,Luo Jiangyun,Huang Hongbing,Zhang Jing

Abstract

AbstractIt is costly, time-consuming, and difficult to measure unconfined compressive strength (UCS) using typical laboratory procedures, particularly when dealing with weak, extremely porous, and fractured rock. By efficiently choosing the variables from a subset of the dataset that includes the Schmidt hammer rebound number (SRn), bulk density (BD), bulk tensile strength (BTS), dry density (DD) test, p-wave velocity test (Vp), and point load index test (Is(50)), this study seeks to establish predictive models for the UCS of rocks. A prediction model for UCS was prepared using K-nearest neighbor (KNN). KNN was preferred over machine learning algorithms because it is simple, versatile, and interpretable. It is particularly useful when it has limited training time, faces non-parametric data with changing distributions, or requires straightforward explanations for predictions. In order to improve KNN’s prediction performance in this research, two optimization procedures (namely, Alibaba and the Forty Thieves (AFT) and Improved Manta-Ray Foraging Optimizer (IMRFO)) were used. Through comparison of KNN single modal performance with that of optimized versions, it is concluded that the KNIM (KNN model optimized with IMRFO) is an excellent possible applicant for the forecast of the UCS of rocks. This study’s results showed that the KNIM model is more suitable than the KNN single model and its counterpart KNAF in terms of accuracy as its correlation of determination (R2) values were 1.1% and 2% higher than KNN and KNAF and its root mean squared error (RMSE) values were 37.9% and 43.7% lower than KNN and KNAF. The improvement in R2 and RMSE values for the KNIM model compared to KNN and KNAF is highly significant for the reliability and accuracy of the predictive model. R2, measuring the proportion of variance predictable in the dependent variable (UCS of rocks) from the independent variables (model predictions), signifies a better fit to observed data. The elevated R2 values for KNIM indicate a stronger correlation with actual UCS values, enhancing the model’s accuracy in representing underlying patterns. Additionally, the reduction in RMSE values for KNIM implies that its predictions are, on average, closer to actual UCS values, contributing to a more accurate and reliable estimation of rock strength.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3