Fundamental Properties of Late-Type Stars in Eclipsing Binaries

Author:

Morales Juan CarlosORCID,Ribas IgnasiORCID,Giménez Álvaro,Baroch DavidORCID

Abstract

Evidence from the analysis of eclipsing binary systems revealed that late-type stars are larger and cooler than predicted by models, and that this is probably caused by stellar magnetic activity. In this work, we revisit this problem taking into account the advancements in the last decade. We provide and updated a list of 32 eclipsing binary or multiple systems, including at least one star with a mass ≲0.7 M⊙ and with mass and radius measured to an accuracy better than 3%. The comparison with stellar structure and evolution theoretical models reveals an overall discrepancy of about 7% and −4% for the radius and effective temperature, respectively, and that it may be larger than previously found below the full convection boundary. Furthermore, the hypothesis of stellar activity is reinforced by the comparison of different systems with similar components. Further eclipsing binaries with accurately determined masses and radii, and with estimated activity levels, as well as the implementation of magnetic activity in theoretical models will help to improve our knowledge of low-mass stars, which are prime targets for exoplanet surveys.

Funder

Ministerio de Ciencie e Innovación

Generalitat de Catalunya

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3