Accurate and Model-independent Radius Determination of Single FGK and M Dwarfs Using Gaia DR3 Data

Author:

Kiman RocioORCID,Brandt Timothy D.ORCID,Faherty Jacqueline K.ORCID,Popinchalk MarkORCID

Abstract

Abstract Measuring fundamental stellar parameters is key to fully comprehending the evolution of stars. However, current theoretical models overpredict effective temperatures, and underpredict radii, compared to observations of K and M dwarfs (radius inflation problem). In this work, we have developed a model-independent method to infer precise radii of single FGK and M dwarfs using Gaia DR3 parallaxes and photometry, and used it to study the radius inflation problem. We calibrated nine surface brightness–color relations for the three Gaia magnitudes and colors using a sample of stars with angular diameter measurements. We achieved an accuracy of 4% in our angular diameter estimations, which Gaia’s parallaxes allow us to convert to physical radii. We validated our method by comparing our radius measurements with literature samples and the Gaia DR3 catalog, which confirmed the accuracy of our method and revealed systematic offsets in the Gaia measurements. Moreover, we used a sample with measured Hα equivalent width (Hα EW), a magnetic activity indicator, to study the radius inflation problem. We demonstrated that active stars have larger radii than inactive stars, showing that radius inflation is correlated with magnetic activity. We found a correlation between the radius inflation of active stars and Hα EW for the mass bin 0.5 < M[M ] ≤ 0.6, but we found no correlation for lower masses. This could be due to lack of precision in our radius estimation or a physical reason. Radius measurements with smaller uncertainties are necessary to distinguish between the two scenarios.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3