Analysis of Surface Settlement Induced by Shield Tunnelling: Grey Relational Analysis and Numerical Simulation Study on Critical Construction Parameters

Author:

Luo Minhe1,Wang Ding23,Wang Xuchun1ORCID,Lu Zelin1ORCID

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

2. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Beijing 100083, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Excessive surface settlement poses significant challenges to shield tunnelling construction, resulting in damage to adjacent buildings, infrastructure, and underground pipelines. This study focused on investigating the surface settlement induced by shield tunnelling during the construction of Qingdao Metro Line 6 between Haigang Road Station and Chaoyang Road Station. Firstly, the settlement data from the left line of the shield tunnel were evaluated by grey relational analysis. The relational coefficients were calculated to assess the correlation degrees of each influential parameter. Subsequently, the four critical influential parameters with the highest relational degrees were chosen to investigate their effects on surface settlement through numerical simulations under different scenarios. The results show that the four parameters with the highest relational degrees were thrust, grouting pressure, earth pressure, and strata elastic modulus. It should be noted that the strata elastic modulus significantly affects surface settlement, while the grouting pressure influences the settlement trough width in weak strata. Moreover, improper thrust magnitude can lead to an increase in surface settlement. Based on these findings, recommendations are proposed for the right-line tunnel construction and practical countermeasures for surface settlement during shield tunnelling construction are provided.

Funder

National Natural Science Foundation of China

Foundation of Research Institute for Deep Underground Science and Engineering

Shield/TBM Construction Risk Consultation Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3