Segment Drift Control with a Supervision Mechanism for Autonomous Vehicles

Author:

Liu Ming,Leng BoORCID,Xiong Lu,Yu Yize,Yang XingORCID

Abstract

Stable maneuverability is extremely important for the overall safety and robustness of autonomous vehicles under extreme conditions, and automated drift is able to ensure the widest possible range of maneuverability. However, due to the strong nonlinearity and fast vehicle dynamics occurring during the drift process, drift control is challenging. In view of the drift parking scenario, this paper proposes a segmented drift parking method to improve the handling ability of vehicles under extreme conditions. The whole process is divided into two parts: the location approach part and the drift part. The model predictive control (MPC) method was used in the approach to achieve consistency between the actual state and the expected state. For drift, the open-loop control law was designed on the basis of drift trajectories obtained by professional drivers. The drift monitoring strategy aims to monitor the whole drift process and improve the success rate of the drift. A simulation and an actual vehicle test platform were built, and the test results show that the proposed algorithm can be used to achieve accurate vehicle drift to the parking position.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporating Human–Machine Transition into CACC Platoon Guidance Strategy for Actuator Failure;Actuators;2024-06-24

2. A data acquisition system to capture extreme human driving behaviour;2023 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC);2023-04-26

3. Dynamic Drifting Control for General Path Tracking of Autonomous Vehicles;IEEE Transactions on Intelligent Vehicles;2023-03

4. Real-Time Model Predictive Control for Simultaneous Drift and Trajectory Tracking of Autonomous Vehicles;2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI);2022-10-28

5. A Model Predictive Control Method for Vehicle Drifting Motions with Measurable Errors;World Electric Vehicle Journal;2022-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3