Abstract
Stable maneuverability is extremely important for the overall safety and robustness of autonomous vehicles under extreme conditions, and automated drift is able to ensure the widest possible range of maneuverability. However, due to the strong nonlinearity and fast vehicle dynamics occurring during the drift process, drift control is challenging. In view of the drift parking scenario, this paper proposes a segmented drift parking method to improve the handling ability of vehicles under extreme conditions. The whole process is divided into two parts: the location approach part and the drift part. The model predictive control (MPC) method was used in the approach to achieve consistency between the actual state and the expected state. For drift, the open-loop control law was designed on the basis of drift trajectories obtained by professional drivers. The drift monitoring strategy aims to monitor the whole drift process and improve the success rate of the drift. A simulation and an actual vehicle test platform were built, and the test results show that the proposed algorithm can be used to achieve accurate vehicle drift to the parking position.
Funder
National Natural Science Foundation of China
Subject
Control and Optimization,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献