Time Series Dataset Survey for Forecasting with Deep Learning

Author:

Hahn Yannik1ORCID,Langer Tristan1ORCID,Meyes Richard1ORCID,Meisen Tobias1ORCID

Affiliation:

1. Institute for Technologies and Management of Digital Transformation (TMDT), Rainer-Gruenter-Straße 21, 42119 Wuppertal, Germany

Abstract

Deep learning models have revolutionized research fields like computer vision and natural language processing by outperforming traditional models in multiple tasks. However, the field of time series analysis, especially time series forecasting, has not seen a similar revolution, despite forecasting being one of the most prominent tasks of predictive data analytics. One crucial problem for time series forecasting is the lack of large, domain-independent benchmark datasets and a competitive research environment, e.g., annual large-scale challenges, that would spur the development of new models, as was the case for CV and NLP. Furthermore, the focus of time series forecasting research is primarily domain-driven, resulting in many highly individual and domain-specific datasets. Consequently, the progress in the entire field is slowed down due to a lack of comparability across models trained on a single benchmark dataset and on a variety of different forecasting challenges. In this paper, we first explore this problem in more detail and derive the need for a comprehensive, domain-unspecific overview of the state-of-the-art of commonly used datasets for prediction tasks. In doing so, we provide an overview of these datasets and improve comparability in time series forecasting by introducing a method to find similar datasets which can be utilized to test a newly developed model. Ultimately, our survey paves the way towards developing a single widely used and accepted benchmark dataset for time series data, built on the various frequently used datasets surveyed in this paper.

Publisher

MDPI AG

Subject

General Medicine

Reference95 articles.

1. A review of unsupervised feature learning and deep learning for time-series modeling;Karlsson;Pattern Recognit. Lett.,2014

2. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting;Li;Adv. Neural Inf. Process. Syst.,2019

3. Deep learning for time series classification: A review;Forestier;Data Min. Knowl. Discov.,2019

4. (2021, October 19). Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search.

5. The mnist database of handwritten digit images for machine learning research;Deng;IEEE Signal Process. Mag.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3