Advanced series decomposition with a gated recurrent unit and graph convolutional neural network for non-stationary data patterns

Author:

Han Huimin,Neira-Molina Harold,Khan Asad,Fang Meie,Mahmoud Haitham A.,Awwad Emad Mahrous,Ahmed Bilal,Ghadi Yazeed Yasin

Abstract

AbstractIn this study, we present the EEG-GCN, a novel hybrid model for the prediction of time series data, adept at addressing the inherent challenges posed by the data's complex, non-linear, and periodic nature, as well as the noise that frequently accompanies it. This model synergizes signal decomposition techniques with a graph convolutional neural network (GCN) for enhanced analytical precision. The EEG-GCN approaches time series data as a one-dimensional temporal signal, applying a dual-layered signal decomposition using both Ensemble Empirical Mode Decomposition (EEMD) and GRU. This two-pronged decomposition process effectively eliminates noise interference and distills the complex signal into more tractable sub-signals. These sub-signals facilitate a more straightforward feature analysis and learning process. To capitalize on the decomposed data, a graph convolutional neural network (GCN) is employed to discern the intricate feature interplay within the sub-signals and to map the interdependencies among the data points. The predictive model then synthesizes the weighted outputs of the GCN to yield the final forecast. A key component of our approach is the integration of a Gated Recurrent Unit (GRU) with EEMD within the GCN framework, referred to as EEMD-GRU-GCN. This combination leverages the strengths of GRU in capturing temporal dependencies and the EEMD's capability in handling non-stationary data, thereby enriching the feature set available for the GCN and enhancing the overall predictive accuracy and stability of the model. Empirical evaluations demonstrate that the EEG-GCN model achieves superior performance metrics. Compared to the baseline GCN model, EEG-GCN shows an average R2 improvement of 60% to 90%, outperforming the other methods. These results substantiate the advanced predictive capability of our proposed model, underscoring its potential for robust and accurate time series forecasting.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3