A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks

Author:

Miraftabzadeh Seyed Mahdi1ORCID,Colombo Cristian Giovanni1ORCID,Longo Michela1ORCID,Foiadelli Federica1

Affiliation:

1. Department of Energy, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy

Abstract

Climate change and global warming drive many governments and scientists to investigate new renewable and green energy sources. Special attention is on solar panel technology, since solar energy is considered one of the primary renewable sources and solar panels can be installed in domestic neighborhoods. Photovoltaic (PV) power prediction is essential to match supply and demand and ensure grid stability. However, the PV system has assertive stochastic behavior, requiring advanced forecasting methods, such as machine learning and deep learning, to predict day-ahead PV power accurately. Machine learning models need a rich historical dataset that includes years of PV power outputs to capture hidden patterns between essential variables to predict day-ahead PV power production accurately. Therefore, this study presents a framework based on the transfer learning method to use reliable trained deep learning models of old PV plants in newly installed PV plants in the same neighborhoods. The numerical results show the effectiveness of transfer learning in day-ahead PV prediction in newly established PV plants where a sizable historical dataset of them is unavailable. Among all nine models presented in this study, the LSTM models have better performance in PV power prediction. The new LSTM model using the inadequate dataset has 0.55 mean square error (MSE) and 47.07% weighted mean absolute percentage error (wMAPE), while the transferred LSTM model improves prediction accuracy to 0.168 MSE and 32.04% wMAPE.

Publisher

MDPI AG

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3