Advancing Solar Power Forecasting: Integrating Boosting Cascade Forest and Multi-Class-Grained Scanning for Enhanced Precision

Author:

Boutahir Mohamed Khalifa1ORCID,Farhaoui Yousef1,Azrour Mourade1ORCID,Sedik Ahmed23ORCID,Nasralla Moustafa M.2ORCID

Affiliation:

1. STI Laboratory, T-IDMS Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University of Meknès, Errachidia 52000, Morocco

2. Smart Systems Engineering Laboratory, Communications and Networks Engineering Department, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

3. Department of the Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33511, Egypt

Abstract

Accurate solar power generation forecasting is paramount for optimizing renewable energy systems and ensuring sustainability in our evolving energy landscape. This study introduces a pioneering approach that synergistically integrates Boosting Cascade Forest and multi-class-grained scanning techniques to enhance the precision of solar farm power output predictions significantly. While Boosting Cascade Forest excels in capturing intricate, nonlinear variable interactions through ensemble decision tree learning, multi-class-grained scanning reveals fine-grained patterns within time-series data. Evaluation with real-world solar farm data demonstrates exceptional performance, reflected in low error metrics (mean absolute error, 0.0016; root mean square error 0.0036) and an impressive R-squared score of 99.6% on testing data. This research represents the inaugural application of these advanced techniques to solar generation forecasting, highlighting their potential to revolutionize renewable energy integration, streamline maintenance, and reduce costs. Opportunities for further refinement of ensemble models and exploration of probabilistic forecasting methods are also discussed, underscoring the significance of this work in advancing solar forecasting techniques for a sustainable energy future.

Funder

Prince Sultan University for paying the Article Processing Charges

Publisher

MDPI AG

Reference47 articles.

1. Artificial intelligence techniques for sizing and power forecasting of grid-connected photovoltaic systems: A review;Mellit;Renew. Sustain. Energy Rev.,2015

2. Solar photovoltaic generation forecasting methods: A review;Sobri;Energy Convers. Manag.,2018

3. National Renewable Energy Laboratory (NREL) (2024, February 24). Robert Margolis, Solar Futures Study Energy Analysis, Available online: https://www.nrel.gov/analysis/solar-futures.html.

4. Review of photovoltaic power forecasting;Antonanzas;Sol. Energy,2016

5. Distributed photovoltaic spatial-temporal forecast: A review;Wang;Renew. Sustain. Energy Rev.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3