Learning Macromanagement in Starcraft by Deep Reinforcement Learning

Author:

Huang WenzhenORCID,Yin Qiyue,Zhang Junge,Huang Kaiqi

Abstract

StarCraft is a real-time strategy game that provides a complex environment for AI research. Macromanagement, i.e., selecting appropriate units to build depending on the current state, is one of the most important problems in this game. To reduce the requirements for expert knowledge and enhance the coordination of the systematic bot, we select reinforcement learning (RL) to tackle the problem of macromanagement. We propose a novel deep RL method, Mean Asynchronous Advantage Actor-Critic (MA3C), which computes the approximate expected policy gradient instead of the gradient of sampled action to reduce the variance of the gradient, and encode the history queue with recurrent neural network to tackle the problem of imperfect information. The experimental results show that MA3C achieves a very high rate of winning, approximately 90%, against the weaker opponents and it improves the win rate about 30% against the stronger opponents. We also propose a novel method to visualize and interpret the policy learned by MA3C. Combined with the visualized results and the snapshots of games, we find that the learned macromanagement not only adapts to the game rules and the policy of the opponent bot, but also cooperates well with the other modules of MA3C-Bot.

Funder

National Natural Science Foundation of China

Beijing Nova Program of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Grandmaster level in StarCraft II using multi-agent reinforcement learning

2. A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft

3. MSC: A Dataset for Macro-Management in StarCraft II;Wu;arXiv,2017

4. Starcraft bots and competitions;Churchill,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3