Learning cooperative strategies in StarCraft through role-based monotonic value function factorization

Author:

Han Kun1,Jiang Feng12,Zhu Haiqi1,Shao Mengxuan1,Yan Ruyu3

Affiliation:

1. Faculty of Computing, Harbin Institute of Technology, Harbin 150000, China

2. School of Medicine and Health, Harbin Institute of Technology, Harbin 150000, China

3. School of Management, Harbin Institute of Technology, Harbin 150000, China

Abstract

<abstract><p>StarCraft is a popular real-time strategy game that has been widely used as a research platform for artificial intelligence. Micromanagement refers to the process of making each unit perform appropriate actions separately, depending on the current state in the the multi-agent system comprising all of the units, i.e., the fine-grained control of individual units for common benefit. Therefore, cooperation between different units is crucially important to improve the joint strategy. We have selected multi-agent deep reinforcement learning to tackle the problem of micromanagement. In this paper, we propose a method for learning cooperative strategies in StarCraft based on role-based montonic value function factorization (RoMIX). RoMIX learns roles based on the potential impact of each agent on the multi-agent task; it then represents the action value of a role in a mixed way based on monotonic value function factorization. The final value is calculated by accumulating the action value of all roles. The role-based learning improves the cooperation between agents on the team, allowing them to learn the joint strategy more quickly and efficiently. In addition, RoMIX can also reduce storage resources to a certain extent. Experiments show that RoMIX can not only solve easy tasks, but it can also learn better cooperation strategies for more complex and difficult tasks.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3