Physicochemical Properties and Whey Proteomes of Camel Milk Powders Produced by Different Concentration and Dehydration Processes

Author:

Zou Zhengzheng,Duley John A.,Cowley David M.,Reed Sarah,Arachchige Buddhika J.,Bhandari Bhesh,Shaw Paul N.ORCID,Bansal NidhiORCID

Abstract

Camel milk powder production is an alternative to preserve the perishable milk for later-date consumption. However, the impacts of dehydration processes on bioactive compounds in camel milk are largely unknown. Hence, the present study attempted to compare the physicochemical properties and protein profiles of camel milk powders produced by different concentration and dehydration processes. Six camel milk powders were produced by freeze- and spray-drying methods in conjunction with two liquid concentration techniques, namely spray dewatering and reverse osmosis. The results of proteomic analysis showed that direct freeze-dried camel milk powder had the least changes in protein profile, followed by direct spray-dried powder. The camel milk powders that underwent concentration processes had more profound changes in their protein profiles. Among the bioactive proteins identified, lactotransferrin and oxidase/peroxidase had the most significant decreases in concentration following processing. On the contrary, glycosylation-dependent cell adhesion molecule 1, peptidoglycan recognition protein 1, and osteopontin increased in concentration. The results revealed that direct freeze drying was the most ideal method for preserving the bioactive proteins during camel milk powder production. However, the freeze-drying technique has cost and scalability constraints, and the current spray-drying technique needs improvement to better retain the bioactivity of camel milk during powder processing.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3