Sparse, Dense, and Attentional Representations for Text Retrieval

Author:

Luan Yi1,Eisenstein Jacob2,Toutanova Kristina3,Collins Michael4

Affiliation:

1. Google Research, United States. luanyi@google.com

2. Google Research, United States. jeisenstein@google.com

3. Google Research, United States. kristout@google.com

4. Google Research, United States. mjcollins@google.com

Abstract

Abstract Dual encoders perform retrieval by encoding documents and queries into dense low-dimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference48 articles.

1. Database-friendly random projections: Johnson-Lindenstrauss with binary coins;Achlioptas;Journal of Computer and System Sciences,2003

2. Optimal compression of approximate inner products and dimension reduction;Alon,2017

3. Approximate nearest neighbor search in high dimensions;Andoni;Proceedings of the International Congress of Mathematicians (ICM 2018),2019

4. A compressed sensing view of unsupervised text embeddings, bag-of-n-grams, and LSTMs;Arora,2018

5. Limitations of learning via embeddings in Euclidean half spaces;Ben-David;Journal of Machine Learning Research,2002

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing scene text image super-resolution via edge enhancement priors;Signal, Image and Video Processing;2024-08-07

2. On Adaptive Knowledge Distillation with Generalized KL-Divergence Loss for Ranking Model Refinement;Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval;2024-08-02

3. CAME: Competitively Learning a Mixture-of-Experts Model for First-stage Retrieval;ACM Transactions on Information Systems;2024-07-22

4. On Elastic Language Models;ACM Transactions on Information Systems;2024-07-12

5. Generative Retrieval as Multi-Vector Dense Retrieval;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3