CAME: Competitively Learning a Mixture-of-Experts Model for First-stage Retrieval

Author:

Guo Jiafeng1ORCID,Cai Yinqiong1ORCID,Bi Keping1ORCID,Fan Yixing1ORCID,Chen Wei1ORCID,Zhang Ruqing1ORCID,Cheng Xueqi1ORCID

Affiliation:

1. Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China

Abstract

The first-stage retrieval aims to retrieve a subset of candidate documents from a huge collection both effectively and efficiently. Since various matching patterns can exist between queries and relevant documents, previous work tries to combine multiple retrieval models to find as many relevant results as possible. The constructed ensembles, whether learned independently or jointly, do not care which component model is more suitable to an instance during training. Thus, they cannot fully exploit the capabilities of different types of retrieval models in identifying diverse relevance patterns. Motivated by this observation, in this paper, we propose a Mixture-of-Experts (MoE) model consisting of representative matching experts and a novel competitive learning mechanism to let the experts develop and enhance their expertise during training. Specifically, our MoE model shares the bottom layers to learn common semantic representations and uses differently structured upper layers to represent various types of retrieval experts. Our competitive learning mechanism has two stages: (1) a standardized learning stage to train the experts equally to develop their capabilities to conduct relevance matching; (2) a specialized learning stage where the experts compete with each other on every training instance and get rewards and updates according to their performance to enhance their expertise on certain types of samples. Experimental results on retrieval benchmark datasets show that our method significantly outperforms the state-of-the-art baselines in the in-domain and out-of-domain settings.

Publisher

Association for Computing Machinery (ACM)

Reference71 articles.

1. Shallow pooling for sparse labels

2. Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu, Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020. SparTerm: Learning term-based sparse representation for fast text retrieval. arXiv preprint arXiv:2010.00768 (2020).

3. Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. 1993. Signature verification using a” siamese” time delay neural network. Advances in neural information processing systems 6 (1993).

4. From ranknet to lambdarank to lambdamart: An overview;Burges Christopher JC;Learning,2010

5. Hard Negatives or False Negatives

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3