On Elastic Language Models

Author:

Zhang Chen1ORCID,Wang Benyou2ORCID,Song Dawei1ORCID

Affiliation:

1. Beijing Institute of Technology, China

2. The Chinese University of Hong Kong, China

Abstract

Large-scale pretrained language models have achieved compelling performance in a wide range of language understanding and information retrieval tasks. While their large scales ensure capacity, they also hinder deployment. Knowledge distillation offers an opportunity to compress a large language model to a small one, in order to reach a reasonable latency-performance tradeoff. However, for scenarios where the number of requests (e.g., queries submitted to a search engine) is highly variant, the static tradeoff attained by the compressed language model might not always fit. Once a model is assigned with a static tradeoff, it could be inadequate in that the latency is too high when the number of requests is large, or the performance is too low when the number of requests is small. To this end, we propose an elastic language model ( ElasticLM ) that elastically adjusts the tradeoff according to the request stream. The basic idea is to introduce a compute elasticity to the compressed language model, so that the tradeoff could vary on-the-fly along a scalable and controllable compute. Specifically, we impose an elastic structure to equip ElasticLM with compute elasticity and design an elastic optimization method to learn ElasticLM under compute elasticity. To serve ElasticLM , we apply an elastic schedule. Considering the specificity of information retrieval, we adapt ElasticLM to dense retrieval and reranking, and present an ElasticDenser and an ElasticRanker respectively. Offline evaluation is conducted on a language understanding benchmark GLUE, and several information retrieval tasks including Natural Question, Trivia QA and MS MARCO. The results show that ElasticLM along with ElasticDenser and ElasticRanker can perform correctly and competitively compared with an array of static baselines. Furthermore, an online simulation with concurrency is also carried out. The results demonstrate that ElasticLM can provide elastic tradeoffs with respect to varying request stream.

Publisher

Association for Computing Machinery (ACM)

Reference86 articles.

1. Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. 2011. The Seventh PASCAL Recognizing Textual Entailment Challenge. In Proceedings of the Fourth Text Analysis Conference, TAC 2011, Gaithersburg, Maryland, USA, November 14-15, 2011. https://tac.nist.gov/publications/2011/additional.papers/RTE7_overview.proceedings.pdf

2. Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once-for-All: Train One Network and Specialize it for Efficient Deployment. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=HylxE1HKwS

3. Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar. 2020. Pre-training Tasks for Embedding-based Large-scale Retrieval. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=rkg-mA4FDr

4. Axiomatically Regularized Pre-training for Ad hoc Search

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3