Generate, Annotate, and Learn: NLP with Synthetic Text

Author:

He Xuanli1,Nassar Islam2,Kiros Jamie3,Haffari Gholamreza4,Norouzi Mohammad5

Affiliation:

1. Monash University, Australia. xuanli.he1@monash.edu

2. Monash University, Australia

3. Google Research, Brain Team, Canada

4. Monash University, Australia. gholamreza.haffari@monash.edu

5. Google Research, Brain Team, Canada. mnorouzi@google.com

Abstract

Abstract This paper studies the use of language models as a source of synthetic unlabeled text for NLP. We formulate a general framework called “generate, annotate, and learn (GAL)” to take advantage of synthetic text within knowledge distillation, self-training, and few-shot learning applications. To generate high-quality task-specific text, we either fine-tune LMs on inputs from the task of interest, or prompt large LMs with few examples. We use the best available classifier to annotate synthetic text with soft pseudo labels for knowledge distillation and self-training, and use LMs to obtain hard labels for few-shot learning. We train new supervised models on the combination of labeled and pseudo-labeled data, which results in significant gains across several applications. We investigate key components of GAL and present theoretical and empirical arguments against the use of class-conditional LMs to generate synthetic labeled text instead of unlabeled text. GAL achieves new state-of-the-art knowledge distillation results for 6-layer transformers on the GLUE leaderboard.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference78 articles.

1. Understanding the Yarowsky algorithm;Abney;Computational Linguistics,2004

2. Learning with a probabilistic teacher;Agrawala;IEEE Transactions on Information Theory,1970

3. Synthetic QA corpora generation with roundtrip consistency;Alberti,2019

4. PIQA: Reasoning about physical commonsense in natural language;Bisk,2020

5. Language models are few-shot learners;Brown;arXiv:2005.14165,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3