PIQA: Reasoning about Physical Commonsense in Natural Language

Author:

Bisk Yonatan,Zellers Rowan,Le bras Ronan,Gao Jianfeng,Choi Yejin

Abstract

To apply eyeshadow without a brush, should I use a cotton swab or a toothpick? Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems. While recent pretrained models (such as BERT) have made progress on question answering over more abstract domains – such as news articles and encyclopedia entries, where text is plentiful – in more physical domains, text is inherently limited due to reporting bias. Can AI systems learn to reliably answer physical commonsense questions without experiencing the physical world?In this paper, we introduce the task of physical commonsense reasoning and a corresponding benchmark dataset Physical Interaction: Question Answering or PIQA. Though humans find the dataset easy (95% accuracy), large pretrained models struggle (∼75%). We provide analysis about the dimensions of knowledge that existing models lack, which offers significant opportunities for future research.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing the Power of Large Language Models for Automated Code Generation and Verification;Robotics;2024-09-11

2. Human Language to Analog Layout Using GLayout Layout Automation Framework;Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD;2024-09-09

3. PrimeNet: A Framework for Commonsense Knowledge Representation and Reasoning Based on Conceptual Primitives;Cognitive Computation;2024-08-30

4. LangBirds: An Agent for Angry Birds using a Large Language Model;2024 IEEE Conference on Games (CoG);2024-08-05

5. Efficient Pretraining and Finetuning of Quantized LLMs with Low-Rank Structure;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3