Multiattentive Recurrent Neural Network Architecture for Multilingual Readability Assessment

Author:

Azpiazu Ion Madrazo1,Pera Maria Soledad1

Affiliation:

1. Department of Computer Science, Boise State University.

Abstract

We present a multiattentive recurrent neural network architecture for automatic multilingual readability assessment. This architecture considers raw words as its main input, but internally captures text structure and informs its word attention process using other syntax- and morphology-related datapoints, known to be of great importance to readability. This is achieved by a multiattentive strategy that allows the neural network to focus on specific parts of a text for predicting its reading level. We conducted an exhaustive evaluation using data sets targeting multiple languages and prediction task types, to compare the proposed model with traditional, state-of-the-art, and other neural network strategies.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Readability Cues Affect Children's Navigation of Search Engine Result Pages;Proceedings of the 23rd Annual ACM Interaction Design and Children Conference;2024-06-17

2. Evaluating the Readability of English Language Using Machine Learning Models;How Machine Learning is Innovating Today's World;2024-06-16

3. Exploring Automatic Readability Assessment for Science Documents within a Multilingual Educational Context;International Journal of Artificial Intelligence in Education;2024-02-07

4. Automatic Text Classification as Relevance Measure for Russian School Physics Texts;2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2023-12-18

5. Language independent optimization of text readability formulas with deep reinforcement learning;Information Design Journal;2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3