Language independent optimization of text readability formulas with deep reinforcement learning

Author:

Hadizadeh Moghaddam Arya1,Ghayoomi Masood2ORCID

Affiliation:

1. University of Kansas

2. Institute for Humanities and Cultural Studies

Abstract

Abstract Readability formulas are used to assess the level of difficulty of a text. These language dependent formulas are introduced with pre-defined parameters. Deep reinforcement learning models can be used for parameter optimization. In this article we argue that an Actor-Critic based model can be used to optimize the parameters in the readability formulas. Furthermore, a selection model is proposed for selecting the most suitable formula to assess the readability of the input text. English and Persian data sets are used for both training and testing. The experimental results of the parameter optimization model show that, on average, the F-score of the model for English increases from 24.7% in the baseline to 38.8%, and for Persian from 23.5% to 47.7%. The proposed algorithm selection model further improves the parameter optimization model to 65.5% based on F-score for both English and Persian.

Publisher

John Benjamins Publishing Company

Subject

Library and Information Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing English Language Writing and Readability Skills using Long Short-Term Memory Model;2023 Computer Applications & Technological Solutions (CATS);2023-10-29

2. A semantic modular framework for events topic modeling in social media;Multimedia Tools and Applications;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3