Identity-Based Patterns in Deep Convolutional Networks: Generative Adversarial Phonology and Reduplication

Author:

Beguš Gašper1

Affiliation:

1. University of California, Berkeley, USA. begus@berkeley.edu

Abstract

Abstract This paper models unsupervised learning of an identity-based pattern (or copying) in speech called reduplication from raw continuous data with deep convolutional neural networks. We use the ciwGAN architecture (Beguš, 2021a) in which learning of meaningful representations in speech emerges from a requirement that the CNNs generate informative data. We propose a technique to wug-test CNNs trained on speech and, based on four generative tests, argue that the network learns to represent an identity-based pattern in its latent space. By manipulating only two categorical variables in the latent space, we can actively turn an unreduplicated form into a reduplicated form with no other substantial changes to the output in the majority of cases. We also argue that the network extends the identity-based pattern to unobserved data. Exploration of how meaningful representations of identity-based patterns emerge in CNNs and how the latent space variables outside of the training range correlate with identity-based patterns in the output has general implications for neural network interpretability.

Publisher

MIT Press - Journals

Reference50 articles.

1. Investigating under and overfitting in Wasserstein Generative Adversarial Networks;Adlam,2019

2. Pre-wiring and pre-training: What does a neural network need to learn truly general identity rules?;Alhama;Journal of Artificial Intelligence Research,2018

3. Wasserstein Generative Adversarial Networks;Arjovsky,2017

4. vq-wav2vec: Self-supervised learning of discrete speech representations;Baevski,2020

5. Ciwgan and fiwgan: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks;Beguš;Neural Networks,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3