Encoding of speech in convolutional layers and the brain stem based on language experience

Author:

Beguš GašperORCID,Zhou AlanORCID,Zhao T. ChristinaORCID

Abstract

ABSTRACTComparing artificial neural networks with outputs of neuroimaging techniques has recently seen substantial advances in (computer) vision and text-based language models. Here, we propose a framework to compare biological and artificial neural computations of spoken language representations and propose several new challenges to this paradigm. The proposed technique is based on a similar principle that underlies electroencephalography (EEG): averaging of neural (artificial or biological) activity across neurons in the time domain, and allows to compare encoding of any acoustic property in the brain and in intermediate convolutional layers of an artificial neural network. Our approach allows a direct comparison of responses to a phonetic property in the brain and in deep neural networks that requires no linear transformations between the signals. We argue that the brain stem response (cABR) and the response in intermediate convolutional layers to the exact same stimulus are highly similar and quantify this observation. The proposed technique not only reveals similarties, but also allows for analysis of the encoding of actual acoustic properties in the two signals: we compare peak latency (i) in cABR relative to the stimulus in the brain stem and in (ii) intermediate convolutional layers relative to the input/output in deep convolutional networks. We also examine and compare the effect of prior language exposure on the peak latency in cABR and in intermediate convolutional layers. Substantial similarities in peak latency encoding between the human brain and intermediate convolutional networks emerge based on results from eight trained networks (including a replication experiment). The proposed technique can be used to compare encoding between the human brain and intermediate convolutional layers for any acoustic property and for other neuroimaging techniques.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3