Pre-Wiring and Pre-Training: What Does a Neural Network Need to Learn Truly General Identity Rules?

Author:

Alhama Raquel G.,Zuidema Willem

Abstract

In an influential paper (“Rule Learning by Seven-Month-Old Infants”), Marcus, Vijayan, Rao and Vishton claimed that connectionist models cannot account for human success at learning tasks that involved generalization of abstract knowledge such as grammatical rules. This claim triggered a heated debate, centered mostly around variants of the Simple Recurrent Network model. In our work, we revisit this unresolved debate and analyze the underlying issues from a different perspective. We argue that, in order to simulate human-like learning of grammatical rules, a neural network model should not be used as a tabula rasa, but rather, the initial wiring of the neural connections and the experience acquired prior to the actual task should be incorporated into the model. We present two methods that aim to provide such initial state: a manipulation of the initial connections of the network in a cognitively plausible manner (concretely, by implementing a “delay-line” memory), and a pre-training algorithm that incrementally challenges the network with novel stimuli. We implement such techniques in an Echo State Network (ESN), and we show that only when combining both techniques the ESN is able to learn truly general identity rules. Finally, we discuss the relation between these cognitively motivated techniques and recent advances in Deep Learning.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3