A Joint Model to Identify and Align Bilingual Named Entities

Author:

Chen Yufeng1,Zong Chengqing1,Su Keh-Yih2

Affiliation:

1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

2. Behavior Design Corporation

Abstract

In this article, an integrated model is derived that jointly identifies and aligns bilingual named entities (NEs) between Chinese and English. The model is motivated by the following observations: (1) whether an NE is translated semantically or phonetically depends greatly on its entity type, (2) entities within an aligned pair should share the same type, and (3) the initially detected NEs can act as anchors and provide further information while selecting NE candidates. Based on these observations, this article proposes a translation mode ratio feature (defined as the proportion of NE internal tokens that are semantically translated), enforces an entity type consistency constraint, and utilizes additional new NE likelihoods (based on the initially detected NE anchors). Experiments show that this novel method significantly outperforms the baseline. The type-insensitive F-score of identified NE pairs increases from 78.4% to 88.0% (12.2% relative improvement) in our Chinese–English NE alignment task, and the type-sensitive F-score increases from 68.4% to 83.0% (21.3% relative improvement). Furthermore, the proposed model demonstrates its robustness when it is tested across different domains. Finally, when semi-supervised learning is conducted to train the adopted English NE recognition model, the proposed model also significantly boosts the English NE recognition type-sensitive F-score.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3