Impact of translation on biomedical information extraction from real-life clinical notes

Author:

Gérardin Christel1,Xiong Yuhan2,Wajsbürt Perceval3,Carrat Fabrice1,Tannier Xavier4

Affiliation:

1. IPLESP

2. Shanghai Jiaotong University

3. Assistance Publique- hôpitaux de Paris

4. Sorbonne Université, Université Sorbonne Paris Nord, LIMICS

Abstract

Abstract The objective of our study is to determine whether using English tools to extract and normalize French medical concepts on translations provides comparable performance to French models trained on a set of annotated French clinical notes. We compare two methods: a method involving French language models and a method involving English language models. For the native French method, the Named Entity Recognition (NER) and normalization steps are performed separately. For the translated English method, after the firsttranslation step, we compare a two-step method and a terminology- oriented method that performs extraction and normalization at the same time. We used French, English and bilingual annotated datasets to evaluate all steps (NER, normalization and translation) of our algorithms. Concerning the results, the native French method performs better than the translated English one with a global f1 score of 0.51 [0.47;0.55] against 0.39 [0.34;0.44] and 0.38 [0.36;0.40] for the two English methods tested. In conclusion, despite the recent improvement of the translation models, there is a signifi- cant performance difference between the two approaches in favor of the native French method which is more efficient on French medical texts, even with few annotated documents.

Publisher

Research Square Platform LLC

Reference42 articles.

1. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L-, Polosukhin I. Attention is all you need,Advances in neural information processing systems30(2017).

2. Devlin J, Chang M-W, Lee K, Toutanova K. Bert:Pre-trainingofdeepbidirectionaltransformersforlanguageunderstanding.arxiv,arXivpreprintarXiv:1810.04805(2019).

3. Clinical natural language processing in languages other than english: opportunities and challenges;Névéol A;J biomedical Semant,2018

4. van Mulligen EM, Afzal Z, Akhondi SA, Vo D, Kors JA. ErasmusMCatCLEFehealth2016:Conceptrecognitionandcodinginfrenchtexts,in:K.Balog,L.Cap-pellato,N.Ferro,C.Macdonald(Eds.),WorkingNotesofCLEF2016-ConferenceandLabsoftheEvaluationforum,E´vora,Portugal,5–8September,2016,Vol.1609ofCEURWorkshopProceedings,CEUR-WS.org,2016,pp.171–178.

5. Gao Q, Vogel S. Parallelimplementationsofwordalignmenttool,in:Softwareengi-neering,testing,andqualityassurancefornaturallanguageprocessing,2008,pp.49–57.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3