Concrete Models and Empirical Evaluations for the Categorical Compositional Distributional Model of Meaning

Author:

Grefenstette Edward1,Sadrzadeh Mehrnoosh2

Affiliation:

1. Google DeepMind

2. Queen Mary University of London

Abstract

Modeling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. The categorical model of Clark, Coecke, and Sadrzadeh (2008) and Coecke, Sadrzadeh, and Clark (2010) provides a solution by unifying a categorial grammar and a distributional model of meaning. It takes into account syntactic relations during semantic vector composition operations. But the setting is abstract: It has not been evaluated on empirical data and applied to any language tasks. We generate concrete models for this setting by developing algorithms to construct tensors and linear maps and instantiate the abstract parameters using empirical data. We then evaluate our concrete models against several experiments, both existing and new, based on measuring how well models align with human judgments in a paraphrase detection task. Our results show the implementation of this general abstract framework to perform on par with or outperform other leading models in these experiments. 1

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference46 articles.

1. Baroni, M. and R. Zamparelli. 2010. Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1,183–1,193, Boston, MA.

2. Learnability of Pregroup Grammars

3. Blacoe, W. and M. Lapata. 2012. A comparison of vector-based representations for semantic composition. Proceedings of the 2012 Conference on Empirical Methods in Natural Language Processing, Jeju Island.

4. Clark, S., B. Coecke, and M. Sadrzadeh. 2008. A compositional distributional model of meaning. In Proceedings of the Second Quantum Interaction Symposium (QI-2008), Oxford.

5. Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3