Author:
Barnes George,Padellaro Adrian,Ramgoolam Sanjaye
Abstract
Abstract
Permutation invariant polynomial functions of matrices have previously been studied as the observables in matrix models invariant under SN, the symmetric group of all permutations of N objects. In this paper, the permutation invariant matrix observables (PIMOs) of degree k are shown to be in one-to-one correspondence with equivalence classes of elements in the diagrammatic partition algebra Pk (N). On a 4-dimensional subspace of the 13-parameter space of SN invariant Gaussian models, there is an enhanced O(N) symmetry. At a special point in this subspace, is the simplest O(N) invariant action. This is used to define an inner product on the PIMOs which is expressible as a trace of a product of elements in the partition algebra. The diagram algebra Pk (N) is used to prove the large N factorisation property for this inner product, which generalizes a familiar large N factorisation for inner products of matrix traces invariant under continuous symmetries.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献