Gauged permutation invariant matrix quantum mechanics: partition functions

Author:

O’Connor DenjoeORCID,Ramgoolam SanjayeORCID

Abstract

Abstract The Hilbert spaces of matrix quantum mechanical systems with N × N matrix degrees of freedom X have been analysed recently in terms of SN symmetric group elements U acting as XUXUT. Solvable models have been constructed uncovering partition algebras as hidden symmetries of these systems. The solvable models include an 11-dimensional space of matrix harmonic oscillators, the simplest of which is the standard matrix harmonic oscillator with U(N) symmetry. The permutation symmetry is realised as gauge symmetry in a path integral formulation in a companion paper. With the simplest matrix oscillator Hamiltonian subject to gauge permutation symmetry, we use the known result for the micro-canonical partition function to derive the canonical partition function. It is expressed as a sum over partitions of N of products of factors which depend on elementary number-theoretic properties of the partitions, notably the least common multiples and greatest common divisors of pairs of parts appearing in the partition. This formula is recovered using the Molien-Weyl formula, which we review for convenience. The Molien-Weyl formula is then used to generalise the formula for the canonical partition function to the 11-parameter permutation invariant matrix harmonic oscillator.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3