Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models

Author:

Clark Stephen12,Curran James R.12

Affiliation:

1. * University of Oxford Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK..

2. ** School of Information Technologies, University of Sydney, NSW 2006, Australia..

Abstract

This article describes a number of log-linear parsing models for an automatically extracted lexicalized grammar. The models are “full” parsing models in the sense that probabilities are defined for complete parses, rather than for independent events derived by decomposing the parse tree. Discriminative training is used to estimate the models, which requires incorrect parses for each sentence in the training data as well as the correct parse. The lexicalized grammar formalism used is Combinatory Categorial Grammar (CCG), and the grammar is automatically extracted from CCGbank, a CCG version of the Penn Treebank. The combination of discriminative training and an automatically extracted grammar leads to a significant memory requirement (up to 25 GB), which is satisfied using a parallel implementation of the BFGS optimization algorithm running on a Beowulf cluster. Dynamic programming over a packed chart, in combination with the parallel implementation, allows us to solve one of the largest-scale estimation problems in the statistical parsing literature in under three hours. A key component of the parsing system, for both training and testing, is a Maximum Entropy supertagger which assigns CCG lexical categories to words in a sentence. The supertagger makes the discriminative training feasible, and also leads to a highly efficient parser. Surprisingly, given CCG's “spurious ambiguity,” the parsing speeds are significantly higher than those reported for comparable parsers in the literature. We also extend the existing parsing techniques for CCG by developing a new model and efficient parsing algorithm which exploits all derivations, including CCG's nonstandard derivations. This model and parsing algorithm, when combined with normal-form constraints, give state-of-the-art accuracy for the recovery of predicate-argument dependencies from CCGbank. The parser is also evaluated on DepBank and compared against the RASP parser, outperforming RASP overall and on the majority of relation types. The evaluation on DepBank raises a number of issues regarding parser evaluation. This article provides a comprehensive blueprint for building a wide-coverage CCG parser. We demonstrate that both accurate and highly efficient parsing is possible with CCG.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trustworthy Formal Natural Language Specifications;Proceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2023-10-18

2. Curing the SICK and Other NLI Maladies;Computational Linguistics;2023

3. Logic-Based Inference With Phrase Abduction Using Vision-and-Language Models;IEEE Access;2023

4. A Hybrid Approach of Distributional Semantics and Event Semantics for Telicity;Logic and Algorithms in Computational Linguistics 2021 (LACompLing2021);2023

5. CCG Supertagging Using Morphological and Dependency Syntax Information;Computational Linguistics and Intelligent Text Processing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3