A Comprehensive Conceptual and Computational Dynamics Framework for Autonomous Regeneration Systems

Author:

Minh-Thai Tran Nguyen12,Samarasinghe Sandhya3,Levin Michael4

Affiliation:

1. Lincoln University, Complex Systems, Big Data and Informatics Initiative (CSBII)

2. Can Tho University, College of Information and Communication Technology

3. Lincoln University, Complex Systems, Big Data and Informatics Initiative (CSBII). Sandhya.Samarasinghe@lincoln.ac.nz

4. Tufts University, Allen Discovery Center

Abstract

Abstract Many biological organisms regenerate structure and function after damage. Despite the long history of research on molecular mechanisms, many questions remain about algorithms by which cells can cooperate towards the same invariant morphogenetic outcomes. Therefore, conceptual frameworks are needed not only for motivating hypotheses for advancing the understanding of regeneration processes in living organisms, but also for regenerative medicine and synthetic biology. Inspired by planarian regeneration, this study offers a novel generic conceptual framework that hypothesizes mechanisms and algorithms by which cell collectives may internally represent an anatomical target morphology towards which they build after damage. Further, the framework contributes a novel nature-inspired computing method for self-repair in engineering and robotics. Our framework, based on past in vivo and in silico studies on planaria, hypothesizes efficient novel mechanisms and algorithms to achieve complete and accurate regeneration of a simple in silico flatwormlike organism from any damage, much like the body-wide immortality of planaria, with minimal information and algorithmic complexity. This framework that extends our previous circular tissue repair model integrates two levels of organization: tissue and organism. In Level 1, three individual in silico tissues (head, body, and tail—each with a large number of tissue cells and a single stem cell at the centre) repair themselves through efficient local communications. Here, the contribution extends our circular tissue model to other shapes and invests them with tissue-wide immortality through an information field holding the minimum body plan. In Level 2, individual tissues combine to form a simple organism. Specifically, the three stem cells form a network that coordinates organism-wide regeneration with the help of Level 1. Here we contribute novel concepts for collective decision-making by stem cells for stem cell regeneration and large-scale recovery. Both levels (tissue cells and stem cells) represent networks that perform simple neural computations and form a feedback control system. With simple and limited cellular computations, our framework minimises computation and algorithmic complexity to achieve complete recovery. We report results from computer simulations of the framework to demonstrate its robustness in recovering the organism after any injury. This comprehensive hypothetical framework that significantly extends the existing biological regeneration models offers a new way to conceptualise the information-processing aspects of regeneration, which may also help design living and non-living self-repairing agents.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3