A Comprehensive conceptual and computational dynamics framework for autonomous regeneration of form and function in biological organisms

Author:

Samarasinghe Sandhya1ORCID,Minh-Thai Tran Nguyen23

Affiliation:

1. Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University , Lincoln 7647 , New Zealand

2. Precision Agriculture Team, Lincoln Agritech Limited , PO Box 69133, Lincoln , New Zealand

3. Department of Information Systems, College of Information and Communication Technology, Can Tho University , 3/2 Street, Ninh Kieu District, Can Tho , Vietnam

Abstract

AbstractIn biology, regeneration is a mysterious phenomenon that has inspired self-repairing systems, robots, and biobots. It is a collective computational process whereby cells communicate to achieve an anatomical set point and restore original function in regenerated tissue or the whole organism. Despite decades of research, the mechanisms involved in this process are still poorly understood. Likewise, the current algorithms are insufficient to overcome this knowledge barrier and enable advances in regenerative medicine, synthetic biology, and living machines/biobots. We propose a comprehensive conceptual framework for the engine of regeneration with hypotheses for the mechanisms and algorithms of stem cell-mediated regeneration that enables a system like the planarian flatworm to fully restore anatomical (form) and bioelectric (function) homeostasis from any small- or large-scale damage. The framework extends the available regeneration knowledge with novel hypotheses to propose collective intelligent self-repair machines with multi-level feedback neural control systems driven by somatic and stem cells. We computationally implemented the framework to demonstrate the robust recovery of both form and function (anatomical and bioelectric homeostasis) in an in silico worm that, in a simple way, resembles the planarian. In the absence of complete regeneration knowledge, the framework contributes to understanding and generating hypotheses for stem cell mediated form and function regeneration, which may help advance regenerative medicine and synthetic biology. Further, as our framework is a bio-inspired and bio-computing self-repair machine, it may be useful for building self-repair robots/biobots and artificial self-repair systems.

Funder

S.S.—LURF Research Fund

T.N.M.—Doctoral Scholarship

Publisher

Oxford University Press (OUP)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface;ACS Symposium Series;2024-03-05

2. Editors’ Biographies;ACS Symposium Series;2024-03-05

3. Subject Index;ACS Symposium Series;2024-03-05

4. Title, Copyright, Foreword;ACS Symposium Series;2024-03-05

5. Metal-Organic Frameworks in Gene Delivery;ACS Symposium Series;2024-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3