A Systematic Comparison of Various Statistical Alignment Models

Author:

Och Franz Josef1,Ney Hermann2

Affiliation:

1. University of Southern California, Information Science Institute (USC/ISI), 4029 Via Marina, Suite 1001, Marina del Rey, CA 90292.

2. RWTH Aachen, Lehrstuhl für Informatik VI, Computer Science Department, RWTH Aachen-University of Technology, D-52056 Aachen, Germany.

Abstract

We present and compare various methods for computing word alignments using statistical or heuristic models. We consider the five alignment models presented in Brown, Della Pietra, Della Pietra, and Mercer (1993), the hidden Markov alignment model, smoothing techniques, and refinements. These statistical models are compared with two heuristic models based on the Dice coefficient. We present different methods for combining word alignments to perform a symmetrization of directed statistical alignment models. As evaluation criterion, we use the quality of the resulting Viterbi alignment compared to a manually produced reference alignment. We evaluate the models on the German-English Verbmobil task and the French-English Hansards task. We perform a detailed analysis of various design decisions of our statistical alignment system and evaluate these on training corpora of various sizes. An important result is that refined alignment models with a first-order dependence and a fertility model yield significantly better results than simple heuristic models. In the Appendix, we present an efficient training algorithm for the alignment models presented.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 882 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Lingual Word Alignment for ASEAN Languages with Contrastive Learning;2024 International Conference on Asian Language Processing (IALP);2024-08-04

2. Mismatching-aware unsupervised translation quality estimation for low-resource languages;Language Resources and Evaluation;2024-05-05

3. Insights into Natural Language Database Query Errors: From Attention Misalignment to User Handling Strategies;ACM Transactions on Interactive Intelligent Systems;2024-03-02

4. Transliteration Characteristics in Romanized Assamese Language Social Media Text and Machine Transliteration;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-02-08

5. Word Sense Disambiguation applied to Assamese-Hindi Bilingual Statistical Machine Translation;Engineering, Technology & Applied Science Research;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3