Word Sense Disambiguation applied to Assamese-Hindi Bilingual Statistical Machine Translation

Author:

Barman Anup Kumar,Sarmah Jumi,Basimatary Subungshri,Nag Amitava

Abstract

Word Sense Disambiguation (WSD) is concerned with automatically assigning the appropriate sense to an ambiguous word. WSD is an important task and plays a crucial role in many Natural Language Processing (NLP) applications. A Statistical Machine Translation (SMT) system translates a source into a target language based on phrase-based statistical translation. MT plays a crucial role in a WSD system, as a source language word may be associated with multiple translations in the target language. This study aims to apply WSD to the input of the MT system to enhance the disambiguation output. Hindi WordNet was used by selecting the most frequent synonym to obtain the most accurate translation. This study also compared Naïve Bayes (NB) and Decision Tree (DT) to test and build a WSD model. NB was more appropriate for the WSD task than DT when evaluated in the Weka machine learning toolkit. To the best of our knowledge, no such work has been carried out yet for the Assamese Indo-Aryan language. The applied WSD achieved better results than the baseline MT system without embedding the WSD module. The results were analyzed by linguist scholars. Furthermore, the Assamese-Hindi transliteration system was merged with the baseline MT system for the translation of proper nouns. This study marks a remarkable contribution to Assamese NLP, which is a low computationally aware Indian language.

Publisher

Engineering, Technology & Applied Science Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stance Detection in Hinglish Data using the BART-large-MNLI Integration Model;Engineering, Technology & Applied Science Research;2024-08-02

2. Leveraging Bilingual Dictionaries for Improved Setswana-English Machine Translation: A Context-Aware Model;2024 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3