Agnostic PAC Learning of Functions on Analog Neural Nets

Author:

Maass Wolfgang1

Affiliation:

1. Institute for Theoretical Computer Science, Technische Universitaet Graz, Klosterwiesgasse 32/2, A-8010 Graz, Austria

Abstract

We consider learning on multilayer neural nets with piecewise polynomial activation functions and a fixed number k of numerical inputs. We exhibit arbitrarily large network architectures for which efficient and provably successful learning algorithms exist in the rather realistic refinement of Valiant's model for probably approximately correct learning ("PAC learning") where no a priori assumptions are required about the "target function" (agnostic learning), arbitrary noise is permitted in the training sample, and the target outputs as well as the network outputs may be arbitrary reals. The number of computation steps of the learning algorithm LEARN that we construct is bounded by a polynomial in the bit-length n of the fixed number of input variables, in the bound s for the allowed bit-length of weights, in 1/ε, where ε is some arbitrary given bound for the true error of the neural net after training, and in 1/δ where δ is some arbitrary given bound for the probability that the learning algorithm fails for a randomly drawn training sample. However, the computation time of LEARN is exponential in the number of weights of the considered network architecture, and therefore only of interest for neural nets of small size. This article provides details to the previously published extended abstract (Maass 1994).

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Overfitting by Machine Learning Methods Using Generalization Equations;2023 26th International Conference on Information Fusion (FUSION);2023-06-28

2. Generalization Equations for Machine Learners Based on Physical and Abstract Laws;2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI);2021-09-23

3. On the Complexity of Computing and Learning with Multiplicative Neural Networks;Neural Computation;2002-02-01

4. Emergence of learning: an approach to coping with NP-complete problems in learning;Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium;2000

5. Simple sample bound for feedforward sigmoid networks with bounded weights;Neurocomputing;1999-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3