On the Complexity of Computing and Learning with Multiplicative Neural Networks

Author:

Schmitt Michael1

Affiliation:

1. Lehrstuhl Mathematik und Informatik, Fakultät für Mathematik, Ruhr-Universität Bochum, D–44780 Bochum, Germany,

Abstract

In a great variety of neuron models, neural inputs are combined using the summing operation. We introduce the concept of multiplicative neural networks that contain units that multiply their inputs instead of summing them and thus allow inputs to interact nonlinearly. The class of multiplicative neural networks comprises such widely known and well-studied network types as higher-order networks and product unit networks. We investigate the complexity of computing and learning for multiplicative neural networks. In particular, we derive upper and lower bounds on the Vapnik-Chervonenkis (VC) dimension and the pseudo-dimension for various types of networks with multiplicative units. As the most general case, we consider feedforward networks consisting of product and sigmoidal units, showing that their pseudo-dimension is bounded from above by a polynomial with the same order of magnitude as the currently best-known bound for purely sigmoidal networks. Moreover, we show that this bound holds even when the unit type, product or sigmoidal, may be learned. Crucial for these results are calculations of solution set components bounds for new network classes. As to lower bounds, we construct product unit networks of fixed depth with super-linear VC dimension. For sigmoidal networks of higher order, we establish polynomial bounds that, in contrast to previous results, do not involve any restriction of the network order. We further consider various classes of higher-order units, also known as sigma-pi units, that are characterized by connectivity constraints. In terms of these, we derive some asymptotically tight bounds. Multiplication plays an important role in both neural modeling of biological behavior and computing and learning with artificial neural networks. We briefly survey research in biology and in applications where multiplication is considered an essential computational element. The results we present here provide new tools for assessing the impact of multiplication on the computational power and the learning capabilities of neural networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3