What Size Net Gives Valid Generalization?

Author:

Baum Eric B.1,Haussler David2

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

2. Department of Computer and Information Science, University of California, Santa Cruz, CA 95064, USA

Abstract

We address the question of when a network can be expected to generalize from m random training examples chosen from some arbitrary probability distribution, assuming that future test examples are drawn from the same distribution. Among our results are the following bounds on appropriate sample vs. network size. Assume 0 < ∊ ≤ 1/8. We show that if m ≥ O(W/∊ log N/∊) random examples can be loaded on a feedforward network of linear threshold functions with N nodes and W weights, so that at least a fraction 1 − ∊/2 of the examples are correctly classified, then one has confidence approaching certainty that the network will correctly classify a fraction 1 − ∊ of future test examples drawn from the same distribution. Conversely, for fully-connected feedforward nets with one hidden layer, any learning algorithm using fewer than Ω(W/∊) random training examples will, for some distributions of examples consistent with an appropriate weight choice, fail at least some fixed fraction of the time to find a weight choice that will correctly classify more than a 1 − ∊ fraction of the future test examples.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3