Controlling Hidden Layer Capacity Through Lateral Connections

Author:

Agyepong Kwabena1,Kothari Ravi1

Affiliation:

1. Artificial Neural Systems Laboratory, Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221-0030, U.S.A.

Abstract

We investigate the effects of including selected lateral interconnections in a feedforward neural network. In a network with one hidden layer consisting of m hidden neurons labeled 1,2… m, hidden neuron j is connected fully to the inputs, the outputs, and hidden neuron j + 1. As a consequence of the lateral connections, each hidden neuron receives two error signals: one from the output layer and one through the lateral interconnection. We show that the use of these lateral interconnections among the hidden-layer neurons facilitates controlled assignment of role and specialization of the hidden-layer neurons. In particular, we show that as training progresses, hidden neurons become progressively specialized—starting from the fringes (i.e., lower and higher numbered hidden neurons, e.g., 1, 2, m — 1 m) and leaving the neurons in the center of the hidden layer (i.e., hidden-layer neurons numbered close to m/2) unspecialized or functionally identical. Consequently, the network behaves like network growing algorithms without the explicit need to add hidden units, and like soft weight sharing due to functionally identical neurons in the center of the hidden layer. Experimental results from one classification and one function approximation problems are presented to illustrate selective specialization of the hidden-layer neurons. In addition, the improved generalization that results from a decrease in the effective number of free parameters is illustrated through a simple function approximation example and with a real-world data set. Besides the reduction in the number of free parameters, the localization of weight sharing may also allow for a method that allows procedural determination for the number of hidden-layer neurons required for a given learning task.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3