Improving Dam and Reservoir Operation Rules Using Stochastic Dynamic Programming and Artificial Neural Network Integration Model

Author:

Fayaed ,Fiyadh ,Khai ,Ahmed ,Afan ,Ibrahim ,Fai ,Koting ,Mohd ,Binti Jaafar ,Hin ,El-Shafie

Abstract

The simulation elevation-surface area-storage interrelationship of a reservoir is a crucial task in developing ideal water release policies for reservoir and dam operations. In this study, an inclusive (stochastic dynamic programming-artificial neural network (SDP-ANN)) model was established and applied to obtain an ideal reservoir operation strategy for Sg. Langat reservoir in Malaysia. The problems associated with the management of water resources mostly relate to uncertainty and the stochastic nature of the reservoir inflow, and the SDP-ANN model is meant to consider uncertainty in the input parameters such as reservoir inflow and reservoir evaporation losses. The performance of the SDP-ANN model was compared to that of the stochastic dynamic programming-autoregression (AR) model. The primary aim of the model is to decrease the squared deviation from the desired water release, which we determined by comparing the SDP-AR and SDP-ANN model performances. The results indicate that the SDP-ANN model demonstrated greater resilience and reliability with a lower supply deficit. Consequently, the case study results confirm that the SDP-ANN model performs better than the SDP-AR model in obtaining the best parameters for the reservoir operation. Specifically, a comparison of the models shows that the proposed Model 2 increased the reliability and resilience of the system by 7.5% and 6.3%, respectively.

Funder

Universiti Malaya

Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3