Statistical Theory of Learning Curves under Entropic Loss Criterion

Author:

Amari Shun-ichi1,Murata Noboru1

Affiliation:

1. Department of Mathematical Engineering and Information Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract

The present paper elucidates a universal property of learning curves, which shows how the generalization error, training error, and the complexity of the underlying stochastic machine are related and how the behavior of a stochastic machine is improved as the number of training examples increases. The error is measured by the entropic loss. It is proved that the generalization error converges to H0, the entropy of the conditional distribution of the true machine, as H0 + m*/(2t), while the training error converges as H0 - m*/(2t), where t is the number of examples and m* shows the complexity of the network. When the model is faithful, implying that the true machine is in the model, m* is reduced to m, the number of modifiable parameters. This is a universal law because it holds for any regular machine irrespective of its structure under the maximum likelihood estimator. Similar relations are obtained for the Bayes and Gibbs learning algorithms. These learning curves show the relation among the accuracy of learning, the complexity of a model, and the number of training examples.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequential Prediction;Learning with the Minimum Description Length Principle;2023

2. Recent advances in algebraic geometry and Bayesian statistics;Information Geometry;2022-12-06

3. Developmental and evolutionary constraints on olfactory circuit selection;Proceedings of the National Academy of Sciences;2022-03-09

4. The Shape of Learning Curves: A Review;IEEE Transactions on Pattern Analysis and Machine Intelligence;2022

5. Accurate and flexible neural-network interatomic potential for mixed materials: TixZr1−xO2 from bulk to clusters and nanoparticles;Physical Review Materials;2021-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3