Developmental and evolutionary constraints on olfactory circuit selection

Author:

Hiratani Naoki1ORCID,Latham Peter E.1ORCID

Affiliation:

1. Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom

Abstract

Significance In this work, we explore the hypothesis that biological neural networks optimize their architecture, through evolution, for learning. We study early olfactory circuits of mammals and insects, which have relatively similar structure but a huge diversity in size. We approximate these circuits as three-layer networks and estimate, analytically, the scaling of the optimal hidden-layer size with input-layer size. We find that both longevity and information in the genome constrain the hidden-layer size, so a range of allometric scalings is possible. However, the experimentally observed allometric scalings in mammals and insects are consistent with biologically plausible values. This analysis should pave the way for a deeper understanding of both biological and artificial networks.

Funder

Gatsby Charitable Foundation

Wellcome

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference80 articles.

1. Optimal Population Codes for Space: Grid Cells Outperform Place Cells

2. Benefits of Pathway Splitting in Sensory Coding

3. Optimal Degrees of Synaptic Connectivity

4. A new look at the statistical model identification

5. E. B. Baum, D. Haussler, “What size net gives valid generalization?” in Advances in Neural Information Processing Systems, D. Touretzky, Ed. (NIPS, 1988), vol. 1, pp. 81–90.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3