A Global Joint Model for Semantic Role Labeling

Author:

Toutanova Kristina123,Haghighi Aria123,Manning Christopher D.123

Affiliation:

1. * Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA..

2. ** University of California Berkeley, Department of Electrical Engineering and Computer Sciences, Soda Hall, Berkeley, CA 94720, USA..

3. † Stanford University, Department of Computer Science, Gates Building 1A, 353 Serra Mall, Stanford CA 94305, USA..

Abstract

We present a model for semantic role labeling that effectively captures the linguistic intuition that a semantic argument frame is a joint structure, with strong dependencies among the arguments. We show how to incorporate these strong dependencies in a statistical joint model with a rich set of features over multiple argument phrases. The proposed model substantially outperforms a similar state-of-the-art local model that does not include dependencies among different arguments. We evaluate the gains from incorporating this joint information on the Propbank corpus, when using correct syntactic parse trees as input, and when using automatically derived parse trees. The gains amount to 24.1% error reduction on all arguments and 36.8% on core arguments for gold-standard parse trees on Propbank. For automatic parse trees, the error reductions are 8.3% and 10.3% on all and core arguments, respectively. We also present results on the CoNLL 2005 shared task data set. Additionally, we explore considering multiple syntactic analyses to cope with parser noise and uncertainty.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Computational Method for Supporting Thai VerbNet Construction;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-12-26

2. Syntax Role for Neural Semantic Role Labeling;Computational Linguistics;2021-11

3. Automatic Question Generation Using Semantic Role Labeling for Morphologically Rich Languages;TEH VJESN;2021

4. Semantic Parsing for Cognitive Framing in Specialized Texts;2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus);2021-01-26

5. Bootstrapping of Semantic Relation Extraction for a Morphologically Rich Language;International Journal on Semantic Web and Information Systems;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3