Syntax Role for Neural Semantic Role Labeling

Author:

Li Zuchao1,Zhao Hai2,He Shexia3,Cai Jiaxun4

Affiliation:

1. Shanghai Jiao Tong University, Department of Computer Science and Engineering. charlee@sjtu.edu.cn

2. Shanghai Jiao Tong University, Department of Computer Science and Engineering. zhaohai@cs.sjtu.edu.cn

3. Shanghai Jiao Tong University, Department of Computer Science and Engineering. heshexia@sjtu.edu.cn

4. Shanghai Jiao Tong University, Department of Computer Science and Engineering. caijiaxun@sjtu.edu.cn

Abstract

Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; however, the necessity of syntactic information was challenged by a few recent neural SRL studies that demonstrate impressive performance without syntactic backbones and suggest that syntax information becomes much less important for neural semantic role labeling, especially when paired with recent deep neural network and large-scale pre-trained language models. Despite this notion, the neural SRL field still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for both dependency and both monolingual and multilingual settings. This paper intends to quantify the importance of syntactic information for neural SRL in the deep learning framework. We introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based, which are accompanied by two categories of exploiting syntactic information: syntax pruning-based and syntax feature-based. Experiments are conducted on the CoNLL-2005, -2009, and -2012 benchmarks for all languages available, and results show that neural SRL models can still benefit from syntactic information under certain conditions. Furthermore, we show the quantitative significance of syntax to neural SRL models together with a thorough empirical survey using existing models.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference100 articles.

1. Neural machine translation by jointly learning to align and translate;Bahdanau,2015

2. The Berkeley FrameNet project;Baker,1998

3. Semantic parsing on Freebase from question-answer pairs;Berant,2013

4. A high-performance syntactic and semantic dependency parser;Björkelund,2010

5. Multilingual semantic role labeling;Björkelund,2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3