Bootstrapping of Semantic Relation Extraction for a Morphologically Rich Language

Author:

Jagan Balaji1,Parthasarathi Ranjani2,Geetha T V3

Affiliation:

1. Anna University, Chennai, India

2. Department of Information Science and Technology, Anna University, Chennai, India

3. Department of Computer Science and Engineering, Anna University, Chennai, India

Abstract

This article focuses on the use of a bootstrapping approach for the extraction of semantic relations that exist between two different concepts in a Tamil text. The proposed system, bootstrapping approach to semantic UNL relation extraction (BASURE) extracts generic relations that exist between different components of a sentence by exploiting the morphological richness of Tamil. Tamil is essentially a partially free word order language which means that semantic relations that exist between the concepts can occur anywhere in the sentence not necessarily in a fixed order. Here, the authors use Universal Networking Language (UNL), an Interlingua framework, to represent the word-based features and aim to define UNL semantic relations that exist between any two constituents in a sentence. The morphological suffix, lexical category and UNL semantic constraints associated with a word are defined as tuples of the pattern used for bootstrapping. Most systems define the initial set of seed patterns manually. However, this article uses a rule-based approach to obtain word-based features that form tuples of the patterns. A bootstrapping approach is then applied to extract all possible instances from the corpus and to generate new patterns. Here, the authors also introduce the use of UNL ontology to discover the semantic similarity between semantic tuples of the pattern, hence, to learn new patterns from the text corpus in an iterative manner. The use of UNL Ontology makes this approach general and domain independent. The results obtained are evaluated and compared with existing approaches and it has been shown that this approach is generic, can extract all sentence based semantic UNL relations and significantly increases the performance of the generic semantic relation extraction system.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference54 articles.

1. Understanding the Yarowsky Algorithm

2. Snowball

3. Analysis and generation of Bengali case structure constructs for universal networking language.;N. Y.Ali;International Journal of Computers and Applications,2011

4. Pattern-based approaches to semantic relation extraction.;A.Auger;International Journal of Theoretical and Applied Issues in Specialized Communication,2008

5. Bach, N., & Badaskar, S. (2007). A review of relation extraction. Literature review for Language and Statistics II, 2.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3