In silico exploration of mouse brain dynamics by focal stimulation reflects the organization of functional networks and sensory processing

Author:

Spiegler Andreas1ORCID,Abadchi Javad Karimi2,Mohajerani Majid2,Jirsa Viktor K.3

Affiliation:

1. Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

2. Canadian Center for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada

3. Institut de Neurosciences des Systèmes, UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, Marseille, France

Abstract

Resting-state functional networks such as the default mode network (DMN) dominate spontaneous brain dynamics. To date, the mechanisms linking brain structure and brain dynamics and functions in cognition, perception, and action remain unknown, mainly due to the uncontrolled and erratic nature of the resting state. Here we used a stimulation paradigm to probe the brain’s resting behavior, providing insights on state-space stability and multiplicity of network trajectories after stimulation. We performed explorations on a mouse model to map spatiotemporal brain dynamics as a function of the stimulation site. We demonstrated the emergence of known functional networks in brain responses. Several responses heavily relied on the DMN and were suggestive of the DMN playing a mechanistic role between functional networks. We probed the simulated brain responses to the stimulation of regions along the information processing chains of sensory systems from periphery up to primary sensory cortices. Moreover, we compared simulated dynamics against in vivo brain responses to optogenetic stimulation. Our results underwrite the importance of anatomical connectivity in the functional organization of brain networks and demonstrate how functionally differentiated information processing chains arise from the same system.

Funder

Fondation pour la Recherche Médicale

European Commission’s Human Brain Project

French National Research Agency

French Institute of Health and Medical Research (Inserm, International Laboratory Associated Program Epi-Surge) and the SATT Sud-Est

Deutsche Forschungsgemeinschaft

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3